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By his famous metaphor of an entangled bank, Darwin1 devel-
oped a viewpoint of how natural selection imposed by inter-
actions among species could organize the web of life. Despite 

the potential interdependence of ecological and evolutionary pro-
cesses, the belief that ecological processes occur at much shorter 
time scales than evolutionary processes has long hampered an inte-
grated understanding of the ecology and evolution of interspecific 
interactions2–4. This situation is changing rapidly as experimental 
and field studies have come to indicate how adaptive evolution, aris-
ing through intraspecific genetic variation and natural selection, 
can alter population dynamics of interacting species5–7 and patterns 
observed at the community or ecosystem level8–10. As a consequence, 
an increasing number of ecologists and evolutionary biologists are 
examining the ubiquity of ‘eco-evolutionary’ feedbacks in biologi-
cal communities11–14. The viewpoint of intermingled ecological and 
evolutionary dynamics is essential especially in systems involving 
microbial species because rapid evolutionary changes of bacteria, 
fungi, and protists are potentially controlling the structure and 
functions of both aquatic and terrestrial ecosystems15–19.

Although the concept of eco-evolutionary feedbacks has already 
contributed substantially to modern ecology2,4,12,14, we still lack a 
general framework for investigating eco-evolutionary dynamics in 
species-rich interaction networks. In addition, our understanding 
of eco-evolutionary feedbacks comes mostly from analyses of sim-
ple experimental systems and mathematical models depicting those 
species-poor systems with limited spatial scales5,20. Therefore, we 
remain ignorant of how eco-evolutionary dynamics can be impor-
tant in (1) multispecies contexts and (2) spatial contexts18 (Fig. 1a). 
An understanding of geographically structured processes of multi
specific interactions is fundamental both to community ecology 
and evolutionary biology21,22, but the two research disciplines have 
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developed mainly from different lines of empirical studies and theo-
retical backgrounds. The metacommunity concept in community 
ecology23–25 and the ‘geographic mosaic’ concept in coevolution-
ary biology26,27 share some key assumptions on interconnected 
dynamics of local communities through dispersal of individuals. 
However, most studies examine either an ecological or evolutionary 
aspect of spatial processes, although a small but growing number 
of studies simultaneously consider the ecology and coevolution of 
geographically structured interspecific interactions28,29.

Despite the potential importance of such an ‘evolving meta
community’ viewpoint22,30, methodological constraints in evolu-
tionary biology have precluded a comprehensive understanding 
of eco-evolutionary feedbacks in real metacommunities. Because 
evaluation of the strength of natural selection and the extent of 
microevolutionary response requires detailed information of 
intraspecific variation in both traits and fitness, it is often difficult 
to simultaneously investigate evolutionary processes shaping two 
or more species. Thus, even though community ecology has a long 
history of systematically analysing abundance and distribution of 
multispecific webs of interaction31,32, most empirical studies of evo-
lutionary processes have targeted interactions involving only a few 
species27,33,34 (but see refs 28,29). The limitation in evolutionary biol-
ogy led researchers to ‘community genetics’10,35, which provided a 
workflow of attributing community-level ecological properties to 
the evolutionary properties (genetic variation) of keystone species. 
However, finding and defining keystone species per se is often diffi-
cult when we try to investigate species-rich systems, especially those 
involving microorganisms.

In searching species whose ecological and/or evolutionary prop-
erties potentially influence whole-community dynamics, network 
theory36–38 is expected to provide a standardized framework for 
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Figure 1 | Evolving metacommunities and species-rich networks. a, Evolving metacommunity framework. The understanding that ecological and evolutionary 
processes can occur at the same time scale (y axis) has recently spurred eco-evolutionary feedback studies. The next challenge is to expand the concept along 
the axes of multispecies (x) and spatial (z) complexities. b, From studies of pairwise (co)evolutionary interactions to those of coevolutionary networks. Every 
pairwise evolutionary interaction (left) is embedded in cascade evolutionary processes (middle), ultimately forming coevolutionary networks (right). Host–
parasite arms-race coevolution, for example, may result in the reduction of parasite mean fitness due to elevated host defence, causing the extinction or host 
shift (coevolutionary alternation27) of the parasite species. Arms races may also promote coevolutionary diversification through escape and radiation processes. 
The traits of coevolving species are expected to match each other within the network (complementarity27,44). Moreover, the traits of species on the same guild 
or trophic level can undergo convergent evolution through cascade evolutionary/coevolutionary events (convergence27,44). c, Inferring interaction networks 
based on high-throughput sequencing. For each gut microbial community dataset of human populations in Malawi, Venezuela, and USA100, potentially positive 
(blue) and negative (red) interactions between bacteria were inferred based on a latent variable model99. In the statistical model, the effects of the age and body 
mass index of host individuals were included as covariates to control correlated environmental responses among bacteria. To reduce computational time in 
the preliminary analysis, 40 human individuals were randomly chosen in each country: 80 most abundant bacterial operational taxonomic units (OTUs) were 
analysed in each dataset (Supplementary Methods).
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analysing various types of species-rich assemblages even without 
a  priori information of the natural history of constituent species. 
Network science, in general, helps us understand the ways in which 
interactions between agents (for example, molecules, websites, 
human individuals, or species) organize the structure and dynam-
ics of complex systems36–38. Since its application to community ecol-
ogy37,39,40, network theory has made it clear that an understanding 
of the topology (architecture) of interaction networks is essential 
for scaling-up the effects of each species or pairwise interaction to 
community-level processes and consequences41,42 (Fig. 1b,c; Box 1). 
Such studies have also proposed that a small proportion of topologi-
cal ‘hub’ species in a network, considerably affect whole community 
properties such as resilience and tolerance to species extinctions40,43. 
Those discussions extend the notion that a small number of species 
at key topological positions organize community-level processes32, 
leading to the hypothesis that community-scale eco-evolutionary 
feedbacks are also driven, in large part, by those hub species.

Once a common framework for analysing both ecological net-
works and ‘coevolutionary networks’27,39,44 (Fig.  1b) is established, 
we will be able to take the next steps and investigate how eco-
evolutionary feedbacks are organized by ‘metacommunity hub’ 
species at the landscape or regional level. Metacommunity hub pred-
ators (or higher-order mobile consumers) moving across local com-
munities are expected to connect different ‘energy channels’45 within 
a metacommunity, thereby stabilizing or destabilizing large spatial-
scale processes (see ref.  46). Likewise, metacommunity hub para-
sites may synchronize and restructure coevolutionary processes of 
local communities47,48, thereby controlling the overall pace of host–
parasite coevolution in the metacommunity49,50. Therefore, it remains 
a major challenge to investigate how those hub species serve as major 
pathways of eco-evolutionary feedbacks at the metacommunity level.

In this Perspective, we briefly review recent conceptual develop
ments for the understanding of spatially structured ecological 
and/or coevolutionary processes, and we then discuss how empirical 
research based on species-rich network data will accelerate the syn-
thesis of ecology and evolutionary biology at the metacommunity 
level. As large datasets of communities and interspecific asso-
ciations are becoming available through high-throughput DNA 
sequencing51–56 (Fig. 2a), we are now able to gain a priori insights 
into the network architecture and topological hubs of species-rich 
metacommunities before we design empirical research on eco-
evolutionary feedbacks. By showing an example of workflow for 

pinpointing topological hub species within a hyper-species-rich 
metacommunity-scale network involving microorganisms, we argue 
that the concept of coevolutionary network dynamics44 helps us 
extend eco-evolutionary feedback studies from simple experimental 
systems to complex multispecific metacommunities in the wild (for 
example, multihost–multiparasite metacommunities19). Overall, we 
suggest how to integrate community ecological and coevolutionary 
insights by focusing on network hub species, which potentially have 
great impacts on landscape-, regional-, or global-scale ecosystem 
processes through eco-evolutionary feedbacks.

Species-rich networks and spatial structure
To promote studies of eco-evolutionary feedbacks in natural meta-
communities beyond current limitations in eco-evolutionary synthe-
ses (Box 2, step 0), we first emphasize the importance of expanding 
the scale of empirical investigations of evolutionary biology to that 
of community ecology in multispecific contexts (Box 1). In recent 
years, the conventional dichotomy between strict pairwise coevolu-
tion (that is, reciprocal adaptation in a pair of species) and ‘diffuse 
coevolution’34 (that is, mostly non-reciprocal evolutionary interac-
tions in a group of species) has been supplanted by more specific 
hypotheses on coevolutionary networks involving multiple spe-
cies27,39. In addition, recent theoretical studies have modelled both 
pairwise and cascading evolutionary or coevolutionary events, pre-
dicting coevolutionary processes of species-rich assemblages within 
network theoretical frameworks44,57. Thus, in principle, every one-
sided or reciprocal adaptation process is embedded within an entire 
web of interactions (that is, a coevolutionary network; Fig. 1b), and 
each interaction is seldom free from the influence of the evolutionary 
processes of adjacent interactions33,39,44.

The next step is then to consider how eco-evolutionary commu-
nity processes are structured geographically. Community ecological 
studies have shown that stochastic and deterministic factors, such 
as priority effects58 and phylogenetic clustering and overdispersion 
in community assembly59,60, can differentiate local species composi-
tions, thereby causing geographic variation in interaction network 
architecture61. Spatial exchange of individuals can further reorgan-
ize local community dynamics, continuously restructuring evolving 
metacommunities. Dispersal of individuals among local commu-
nities, for example, may prevent local extinctions and alter local 
species compositions, controlling species diversity patterns at the 
metacommunity level (that is, β- and γ-diversity)23,24.

In examining communities involving tens or hundreds of spe-
cies, DNA barcoding based on next-generation sequencing allows 
high-throughput analysis of network architecture in various types 
of interspecific interactions. DNA barcoding, a way of taxonomic 
identification of specimens based on DNA sequence information, 
has been used to promote the studies of prey–predator and host–
symbiont associations55,75. Those studies have targeted prey DNA 
in predator gut contents or symbiont DNA in host tissue, enhanc-
ing our knowledge of interspecific associations that are impos-
sible or difficult to observe by eye. Owing to recent advances in 
sequencing and bioinformatic technologies, we are now able to 
analyse hundreds of predator gut or host tissue samples in a single 
run of a next-generation sequencer51,52 (Fig. 2a). Therefore, obtain-
ing large datasets of victim–consumer, host–symbiont, or symbi-
ont–symbiont associations is becoming increasingly easy in a wide 
range of biological communities51–54.

Although high-throughput DNA sequencing data do not pro-
vide any direct evidence of antagonistic or mutualistic interac-
tions75, recently developed statistical frameworks help us infer 

mutualistic and antagonistic interactions between species solely 
based on community datasets. In human gut microbiome stud-
ies, for example, potential ecological interactions between bacte-
rial symbionts have been estimated using ‘co-occurrence’ patterns 
found in the high-throughput sequencing datasets of microbial 
communities53,54. Although pairs of species highlighted in these 
studies can include those merely sharing environmental prefer-
ences or niches, a recently proposed statistical procedure99 allows 
us to separate interspecific interaction effects from niche sharing 
effects. Using the new Bayesian statistical method, we can control 
shared niche effects in a model, estimating potential interspecific 
interaction effects99. Our preliminary application of this method 
to human gut microbiome data100 (Supplementary Methods) sug-
gested that this statistical approach could be used for reconstruct-
ing networks of mutualistic and antagonistic interactions based 
on high-throughput sequencing datasets (Fig. 1c). Thus, ongoing 
advances in both molecular ecological and statistical methods are 
reorganizing the workflow of empirical studies that target complex 
webs of interactions in species-rich assemblages.

Box 1 | High-throughput sequencing for interaction network analyses.
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Because community-scale outcomes of both ecological and evo-
lutionary processes can depend on interaction network architec-
ture44,62, evolving metacommunity processes can be also structured 
by geographic variation in network structure61. Due to ‘G × G × E’ 
effects27 (genotype by genotype by environment) on the outcomes of 
interspecific interactions, both spatial genetic variation of interact-
ing species and local environmental conditions can generate geo-
graphic variation in the direction and strength of natural selection 
on the traits mediating interspecific interactions28,63,64. Such geo-
graphic selection mosaics27 then create geographically structured 
processes of host/prey defence and parasite/predator offense28,47,63, 
resulting in differences among local communities in network topol-
ogy (Fig. 1b). Spatially structured coevolutionary processes, then, 
further restructure metacommunity-scale eco-evolutionary feed-
backs27. Inflow of alleles selected in other local communities as 
well as hybridization and polyploidization33,35 can provide novel 
genetic variation of coevolving traits in local communities, acceler-
ating the rate of coevolution in recipient communities49 (see ref. 65). 
However, high levels of gene flow may overwhelm locally-selected 
alleles and hence perturb local reciprocal adaptation between inter-
acting species (see ref. 66), resulting in the mismatch of coevolving 
traits27 (for example, local mismatches between host–symbiont 
compatibility alleles).

Thus, ecological processes controlling local species composition 
and (co)evolutionary processes organizing network topologies both 
generate the geographic differences in interaction network struc-
ture61. These processes, in turn, shape the ecological and coevo-
lutionary processes at the metacommunity level. In this sense, 
ecological and coevolutionary processes are inevitably intermingled 
with each other at the metacommunity level through the causes and 
consequences of geographic variation in interaction network struc-
ture21,22,27. This perspective illuminates the importance of empirical 
studies that analyse geographic variation in network architecture61 
by focusing on spatial heterogeneity in environmental factors and 
ecological and evolutionary processes as well as G × G × E effects in 
interspecific interactions27,67.

Metacommunity hubs
Through geographically structured eco-evolutionary feedbacks, 
different trophic levels (or guilds) can contribute differentially to 
metacommunity structure and dynamics. Webs of interspecific 
interactions often consist of species from at least two trophic lev-
els that differ in the spatial scale of dispersal68. For example, many 
vertebrate and invertebrate predator species move across local 
prey communities, and bacterial (fungal) parasites in aquatic (ter-
restrial) ecosystems often have broader dispersal ranges than their 
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macroorganismal hosts15,69,70. Such asymmetry in dispersal abilities 
causes differences in the ranges of gene flow, thereby differentiat-
ing the spatial scales of local adaptation between interacting trophic 
levels48,70,71. In interactions between the pathogenic fungal species 
Melampsora lini and its host plant Linum marginale, for instance, 
pathogens potentially have a coevolutionary advantage over hosts, 
because the long-range dispersal of their spores provides local 
populations with novel virulence alleles48,50.

Effects to regional-level ecological and coevolutionary pro-
cesses can vary not only between but also within trophic levels. 
Metacommunity-level foundation (or keystone) predators, for 
instance, may control local prey species compositions and enhance 
regional ecological stability72 by preventing the outbreaks of com-
petitively superior prey species in each local community (that is, 
apparent competition73 at the metacommunity level). In addition, 
a few pathogenic species with broad dispersal ranges may spatially 
homogenize the level of virulence in multispecific pathogen–host 
interactions (see ref. 49), potentially causing metacommunity-scale 
convergence of host resistance traits even without hosts’ dispersal.

Overall, geographically differentiated processes of eco-
evolutionary feedbacks could be continuously restructured by a 
small number of species that synchronize and restructure eco-
logical and coevolutionary dynamics among local communi-
ties (Box 2, step 1). This proposition leads to the expectation that 
major pathways in evolving metacommunity processes derive from 
interactions driven by hub species within a ‘metacommunity-level 
network’. Hereafter, we use the term metacommunity hubs to refer 
to species placed at key topological positions in networks at the 
metacommunity level. In this paper, network hubs are defined solely 
based on network topological data (Fig. 2b) in order to develop gen-
eral research workflows for species-rich metacommunities without 
detailed natural history information of constituent species. This 
research strategy is crucial when we study species-rich microbial 
systems, for which detailed data of population size and geographic 
distribution are unavailable for most species.

Hereafter, we propose an empirical research workflow for investi-
gating evolving metacommunity processes based on the promise that 
metacommunity hub species function as major pathways of feed-
backs between ecological and coevolutionary dynamics. This reduc-
tionistic approach of attributing metacommunity-scale phenomena 
to the properties of a few species is similar to community genet-
ics8,10, in which researchers investigate how variation in genes and 
traits of keystone, foundation, or dominant species control patterns 
at the community level. However, our empirical research framework 
is designed to examine not only the effects of the genetic structure 
of metacommunity hubs on metacommunity ecological processes 
(hereafter, ‘metacommunity genetics’) but also the relationships 
between ecological and genetic properties of metacommunity hubs 
and metacommunity-scale ecological and evolutionary processes as 
detailed below.

The bases of our research framework are summarized by two 
working hypotheses (Box 2, step 2). First, we posit that the structure 
of metacommunity-scale networks, which consist of interaction 
networks of multiple local communities, determines the outcomes 
of both ecological and coevolutionary processes as well as feedbacks 
between them. Second, we hypothesize that metacommunity hub 
species, which are placed at key topological positions within the 
metacommunity-level network, play major roles in synchronizing 
and restructuring eco-evolutionary dynamics at the regional or 
landscape level.

Network analyses of metacommunity hubs
To fuel future empirical studies testing the hypotheses (Box  2, 
step  2), we illustrate a way for inferring the architecture of meta-
community-level networks and then finding topological hub species 
within the networks. Large community datasets are becoming easily 

available through next-generation sequencing, which allows high-
throughput DNA-barcoding of prey–predator, host–parasite, host–
symbiont, and symbiont–symbiont associations51–56 (Fig. 2a). These 
methodological advances not only allow webs of interaction to be 
analysed more comprehensively (Fig. 1c) but also expand the tar-
get of network science to various types of interactions, which have 
been difficult to examine with conventional methods (for example, 
direct field observations). Moreover, such DNA-based analysis also 

We propose the following steps toward the development of 
empirical research frameworks for future evolving meta
community studies:

Step 0: Understanding current limitations
Although studies of simple experimental systems are rapidly 
reorganizing our knowledge of eco-evolutionary feedbacks, it 
remains difficult to investigate the interplay of ecological and 
coevolutionary processes in species-rich communities and meta-
communities in the wild.

Although community (and metacommunity) genetics offers 
a basis for attributing ecological phenomena to the evolutionary 
processes of a few keystone or dominant species, finding key-
stone/dominant species within complex communities and meta-
communities is, in itself, often difficult.

The number of species examined in coevolutionary studies is 
far less than that in community ecological studies, because meas-
uring natural selection strength, response to selection, and/or 
population genetic structure often requires substantial research 
efforts even in an analysis of a pairwise interspecific interaction.

Step 1: Synthesizing current insights
Top predators, dominant primary producers, and super-general-
ist mutualists are often network hubs and they can drive whole-
community ecological and evolutionary dynamics.

Species with broad ranges can synchronize or restructure 
metacommunity-level processes by interlinking local communi-
ties through dispersal and gene flow.

Step 2: Working hypotheses
Species in local communities are involved in a metacommunity-
level interaction (association) network, whose topology deter-
mines the consequences of both ecological and coevolutionary 
processes and feedbacks between them.

Species placed at key topological positions in a meta
community-level network play major roles in structuring eco-
evolutionary dynamics at the regional or landscape level.

Step 3: Specific issues on evolving metacommunities 
(i) Do allele frequency changes of a functionally important gene 
of a metacommunity hub species explain the population dynam-
ics of other hub species across metacommunities? (ii) Do tempo-
ral changes in the FST of a hub species’ functional gene drive the 
dynamics of the β-diversity of a focal metacommunity? (iii) Do 
abiotic environmental fluctuations drive the metatranscriptomic 
dynamics of local communities; (iv) thereby changing the archi-
tecture of local- and metacommunity-level interaction net-
works? What kinds of ecological and evolutionary characteristics 
(for example, γ-diversity, network nestedness37 or modularity43, 
and coevolutionary rates at the metacommunity level) determine 
the robustness of metacommunities against invading species? 
(Roman numerals are linked to Fig. 4b).

Box 2 | Steps toward the understanding of eco-evolutionary 
feedbacks in natural metacommunities.
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extends research platforms for classic study systems such as plant–
pollinator interactions by identifying, for example, visitors to flowers 
based on bacterial community compositions specific to respective 
pollinator species74. Standardized protocols for high-throughput 
sequencing and subsequent bioinformatic procedures are making 
network topological analysis increasingly easy75,76, providing novel 
opportunities for investigating geographically hierarchical processes 
of multispecific eco-evolutionary feedbacks.

Imagine a situation in which a researcher has data on the net-
work architecture of multiple local communities through high-
throughput sequencing75–77 (Fig.  3a). If the data include species 
that occur in two or more local communities between which they 
migrate, the local network topologies would be interlinked with 
each other by the presence of the shared species (Fig. 3b). Those spe-
cies found in multiple local communities possibly constitute a meta-
population78 within the examined region or landscape, potentially 
synchronizing or restructuring local processes and thereby continu-
ously reshaping an evolving metacommunity48,71. In contrast, spe-
cies unique to a single local community are unlikely to contribute 
directly to the synchronization of local ecological or coevolutionary 
processes, even if they play major roles within the local community.

Within the metacommunity-level network presented in Fig. 3b, 
species are expected to differ in their ability to synchronize or 
restructure ecological and coevolutionary processes among local 
communities. One straightforward way of evaluating topologi-
cal properties of each species is to use network ‘centrality’ metrics 
(Fig. 2b). An important benefit of using simple network metrics is 
that both local- and metacommunity-level topological roles of each 
species can be evaluated solely based on network topological data. 
Conceptually, species in a metacommunity probably vary not only 
in their roles in interconnecting local community processes but also 
in their contributions to ecological and evolutionary phenomena 
within each local community. Therefore, by applying centrality anal-
yses in parallel with a metacommunity-level network and to each 
local network, one can evaluate both regional and local topological 
properties of each species within a metacommunity-level network 
(Fig. 3c). Although this network-based approach does not provide 
any direct evidence of antagonistic or mutualistic interactions (see 
Box 1 and Fig. 1c), it can help pinpoint which species are probable 
focal points (hubs) for metacommunity structure and dynamics.

When metacommunity-level centrality scores are plotted against 
the centrality scores calculated within one of local communi-
ties (Fig. 3c), we can classify species into four categories on a two-
dimensional surface; that is, (1) metacommunity hubs placed at the 
cores of both local- and metacommunity-level networks, (2) meta-
community connectors that may play major regional roles despite 
their minor local contributions, (3) local hubs whose topological 
influence is strong but confined to local processes, and (4) peripherals 
playing minor topological roles both locally and regionally.

Our example of two-dimensional centrality analysis implies 
that species potentially organizing local ecological and evolution-
ary processes as network hubs do not necessarily play important 
roles at the metacommunity level. Specifically, in the case of the 
belowground plant–fungus metacommunity network shown in 
Fig. 3 (Supplementary Methods), many possibly endophytic fungi 
showed statistical properties representing disproportionately large 
topological roles at the metacommunity level relative to their local 
topological roles (Fig.  3c). Considering that ecological and physi-
ological roles of endophytic fungi have been far less understood 
than those of arbuscular mycorrhizal and ectomycorrhizal fungi, the 
metacommunity-hub methodological workflow helps us find poten-
tial ‘hidden’ keystone or foundation79 species of metacommunity-
scale dynamics out of many species with unknown natural history 
(see ref. 54). Given that plants may use common genetic mechanisms 
for symbioses with diverse root-associated fungi and bacteria80, the 
population genetic structure of metacommunity-hub endophytes 

may control the overall pace of host–symbiont coevolution at the 
metacommunity-level, determining the resistance and susceptibil-
ity of local- and metacommunities to invading pathogens or pests. 
Overall, the metacommunity-hub methodological framework allows 
us to take into account the complexity of real metacommunities 
beyond our current knowledge of keystone and foundation spe-
cies, setting novel standards and opportunities for deepening our 
understanding of eco-evolutionary feedbacks in the wild.

Spatiotemporal eco-evolutionary dynamics
Once metacommunity hub (and connector) species are detected 
in network data, we will be able to analyse how those hubs work 
as interfaces between ecological and coevolutionary processes at 
the metacommunity level (Box  2, step  3; Fig.  4). In other words, 
by focusing on a small number of hub species out of hundreds of 
species in a metacommunity, we can infer how population dynam-
ics and/or population genetic dynamics of hub species contribute 
to metacommunity-scale temporal dynamics. Recent advances in 
time-series data analysis81–84 have the potential to aid these analyses. 
These methods have been used to estimate interspecific interactions 
based on population dynamics data of potentially interacting species 
(for example, time-series abundance data of prey and predators81,82), 
but they can also be used for inferring relationships between various 
biotic and abiotic variables81. Therefore, by using time-series ana-
lytical frameworks, it is possible to examine, for example, how the 
allele frequency of a functionally important trait of a hub species 
in a local community can drive population dynamics of other hub 
species in other local communities, and vice versa (Fig. 4b; Box 2, 
step 3).

Because microorganisms (for example, bacteria and fungi) 
generally have small genome sizes, draft whole-genome sequenc-
ing can be easily conducted for hub microbial species in various 
types of networks. Once such reference-genome data of hub spe-
cies become available, single-nucleotide-polymorphism (SNP) 
variation of numerous genetic loci will be monitored for the tar-
get hub species based on (non-amplicon) metagenomic sequenc-
ing. Coevolutionary interactions in a pair of hub species can be 
then inferred by screening for pairs of functional genes showing 
interdependent SNP dynamics through time. We will also be able 
to examine how temporal variation in ecological interaction states 
(for example, infection rates) depend not only on temporal patterns 
in inferred coevolutionary traits and genes but also on changes in 
local abiotic environments, thereby detecting G × G × E effects in 
the wild. Temporal genetic analysis also has the potential to reveal 
synchronization of intraspecific genetic variation between a pair of 
local communities, setting a basis for evaluating how gene flow con-
tributes to metacommunity-scale processes. For example, we should 
be able to infer whether inter-population SNP variation of a focal 
hub species drives the temporal changes in the network structural 
properties or β-diversity85 of a metacommunity (Fig.  4b; Box  2, 
step 3).

The benefits of those genetic profiling techniques would be dou-
bled by combining them with emerging molecular ecological pro-
tocols that allow high-throughput analyses of community structure 
and transcriptomic dynamics. ‘Control DNA’86 techniques, for exam-
ple, can calibrate DNA concentrations over multiple (time-series) 
samples, thereby monitoring temporal changes in the abundance of 
each species in a community or metacommunity. Furthermore, as 
time-series modelling of transcriptomic profiles in wild conditions 
(that is, field transcriptomics) has become more common87, it will 
become possible to link the abiotic environmental dependence of 
metatranscriptomic dynamics with temporal changes in local- and 
metacommunity-level network architecture (Fig. 4; Box 2, step 3).

The combination of methods we have suggested here has limita-
tions as well as benefits. For example, when analysing species-rich 
data, a priori information of network hub species helps us focus 
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Figure 3 | Local community- and metacommunity-level networks. a, Networks representing the associations of plants and their root-associated fungi 
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b, Metacommunity-level network. By the presence of fungal species that appear in multiple local communities (yellow circles in the right network), the 
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Figure 4 | Empirical study framework for spatiotemporal dynamics in metacommunities. a, Basis for monitoring ecological and evolutionary processes 
through time. Once metacommunity hub species are pinpointed out of hundreds or thousands of species in a wild metacommunity, various molecular 
methodological platforms will allow us to track the genetic/population dynamics of those hubs. b, Integration of ecological and evolutionary time-series 
data. With time-series analytical methods, we can infer relationships between ecological and evolutionary processes. For example, we can examine 
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metacommunity and vice versa. Roman numerals indicate specific hypotheses in Box 2, step 3.
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on the genetic and population dynamics of species with poten-
tially important roles (Fig. 3c), but the network centrality of each 
species itself can change through time (for example, through sea-
sons). We may therefore need to redefine metacommunity hubs 
if there are major changes in interaction status67 and/or network 
architecture88,89 during the time-series observations. However, 
alterations of hub species, in themselves, are ecologically intrigu-
ing phenomena: by monitoring network centralities of multiple 
potential hubs, we may be able to evaluate how the dynamic 
nature of interaction networks drives local- and metacommunity-
scale processes. In addition, although we have put emphasis on 
the use of basic network metrics such as betweenness centrality, 
which is intuitive and applicable to a wide range of network data, 
more sophisticated network-analytical methods will allow us to 
uncover the dynamical nature of interaction network architecture 
through time90.

Conclusions
Biological communities are complex systems in which diverse 
types of agents (species) are continuously restructuring each other’s 
quantitative (ecological) and qualitative (evolutionary or plastic) 
properties in spatially structured processes21,23,27. Although theories 
on species coexistence or coevolutionary network dynamics have 
been inspired mainly by interactions among macroorganisms (that 
is, animals and plants), mechanisms driving highly species-rich 
assemblages, especially those involving microorganisms77,91, have 
recently received much attention19,75,92–94. As a consequence, test-
ing whether existing ecological, evolutionary, and eco-evolutionary 
theories are applicable to poorly explored (microbial) systems in 
nature remains a major challenge92,93,95. Another important chal-
lenge is to examine the working hypotheses (Box  2, step  2) and 
specific issues (Box 2, step 3) discussed herein by constructing spe-
cies-rich experimental metacommunities in which we can manipu-
late the population density, genetic diversity, and dispersal of each 
species. For example, a set of spatially structured mesocosms with 
tens of annual plant species and hundreds of endophytic or patho-
genic fungi will provide opportunities for testing how the spatially 
synchronized population dynamics and spatial genetic homo-
geneity of species with high network centralities determine the 
network-scale coevolutionary rates (for example, the frequency of 
plants’ resistant alleles) or ecosystem properties (for example, plant 
biomass) of the metacommunity.

Understanding of eco-evolutionary feedbacks in meta
communities is important not only for basic science but also for 
applied environmental sciences. For example, as evident in recent 
global decline of amphibian populations and the emergence of 
antibiotic- or fungicide-resistant pathogens, the spread of infec-
tious diseases across different regions or different types of habitat is 
threatening endangered species and degrading the ecosystem func-
tions of both natural and agricultural fields worldwide15,17,19. In this 
context, it is increasingly important to develop theories on the key 
ecological and evolutionary processes that determine the robustness 
of local- and metacommunities against invading (spreading) spe-
cies (Box 2, step 3). Furthermore, finding ‘keystone communities’96, 
which play major ecological and evolutionary roles within a spa-
tially explicit network linking local communities97,98, will become 
a major challenge in applied ecology. Overall, further integration 
of ecology and evolutionary biology is needed for biodiversity 
conservation and the management of sustainable natural and agri-
cultural ecosystems. By integrating all the rapidly growing perspec-
tives on eco-evolutionary feedbacks, metacommunity processes, 
and ecological and coevolutionary networks, our understanding of 
biosphere dynamics will be reorganized.
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